批评(2024.11.14)

因为七次成立,它就占了一部分概率,平均值怎么会在边界呢去网上查了,掷骰子集齐六个点数的平均次数是14.7,用伯努利实验,调和级数,把骰子面增加下去没什么算的价值了。那么再复杂一点,要收集两轮,平均次数是多少呢?是14.7*2么?不太好算,不过应该还可以用伯努利算。再复杂一点,每次可以掷两次骰子,那么期望又会是多少?为什么想起这个呢?因为玩游戏的时候碰到了这样的活动,想看看还有几天能做完活动,做不完就放弃了很累人的。

一次掷两个很好理解,可以看成先一后一,毕竟两枚骰子是独立的,那么收集一轮只的期望就是8次没什么问题。

而且保守估计,收集两轮的次数要少于14.7*2。因为收集一轮过程中浪费的步骤可以用在第二轮收集中。如果两次收集是独立的,就是29.4次,而有了剩余价值,次数一定要比29.4少了。第一轮的平均浪费步是8.7,这个8.7的浪费在第二轮的可用性大概是多少呢?

这个次数衰减是有的,再来用极端法,收集100轮,期望的次数会是多少呢?收敛到何处呢?kimi给出的答案是大约29.4,并说影响了收集难度,所以结果会大于29.4还是小于29.4呢?

小主,

给一个上条件,假如我要的是,不要4,需要掷几次?期望恰好是13.7,所以,无论是什么边角料都是来帮忙的,而不是苛求的。那么一定是小于29.4而不是大约29.4。于是我又问了kimi,它也说是小于29.4。md,AI好聪明啊!我得承认,它比我聪明太多。

具体值怎么搞?

或者换个思路再求个别的,掷出有相同的点数,掷骰子次数的期望是多少?最好情况2次,最坏情况7次,期望次是多少呢?既然完备事件是有穷的,我可以尝试寻找50%在哪两个中间,以给出数值解,拆开点数就不好算解析解了。完备事件组是,算完前六个,第七个概率一减就有了,硬算也可。2次概率1/6,3次概率5/18,4次5/18,5次5/27,6次25/324,7次5/324,但是如此算期望真的对么?期望次数是3~4次,稍稍偏向于3,那么也就是大约在3.5以内的位置。

边界出现的概率真的很小哦!不过也看来这个新的问题似乎与旧问题没什么关系,再回来吧。

我算到这里发现点数要被拆开了!

14.7次少了一轮,剩下8.7次边角料,这个边角料期望寻找到几个点数了呢?这个数量与收集的期望次数13.7是不一样的啊!但是与已经随机找到五个不同点数的期望8.7是一样的?

也就是说,第一轮收集完毕以后,期望的情况是:只差一个点数没有收集,那么最后一个点数收集的期望次数是6次。最终两套收集,期望次数20.7次。可怕的是什么呢?20.7-12=8.7,如果你要收集第三轮,边角料还是8.7左右。最后我不得不怀疑,收集100套的期望次数约是600次。某些东西收敛到6附近了。

数字越大,越物尽其用,减少浪费。可惜,期望不意味着绝对的保底,永远也掷不出6的概率也是有的。

精确何在呢?不知道,但是我知道的是,我这样的算法已经能保证某些精度了。

kimi用大量计算数值模拟了一下,两套收集的次数期望确实在20附近,但更加精确解还是算不出来。既然收敛了,那么一定是在调和级数以内了。算尘埃落定吧,学自动化的,要的不是绝对的准确,只要收敛了,就确保稳定性了。

我的大脑只能给我一个答案的取值范围,目前还算不出精确解析解。果然,考试的难度不高啊!如果只是为了应付考试,学不到什么高深的东西。

唔再冷静地思考一下……还是睡觉吧!

干嘛要这样算来算去呢?错过了午睡只能下午补了。晚安!